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Abstract: - The wind power prediction plays an essential role in operation, planning, taking part in open access 
and real time balancing of power system. Various forecasting methodologies have been proposed in number of 
research papers since last few decades. Therefore, on the basis of available literature, this review analyses new 
and current developments in the area of wind power & prediction of its derivatives (speed or direction) and 
compared in the form of comparative tables concerning the accuracy with taken care of variables to be 
predicted, time horizon, specific application area, data pre-processing, input data selection techniques, data 
used and various neural network techniques with their structure. The main focus of this review is to facilitate 
the various issues related to wind power forecasting techniques, emphasis on reduction of complexity of 
forecasting problem with increase in forecasting accuracy for different time span. The purpose of this research 
article is to motivate the power system researchers for designing new highly accurate online/offline models 
with concern to different issues regarding wind power resulting in secure reliable power system operation & 
better utilisation of energy resources. It has been observed that from a comparative forecasting accuracy 
analysis, hybrid models presented more accurate results as compared to other models.  
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1 Introduction 
In recent years, the electricity demand has grown 
rapidly as a result of social, economical and 
industrial development, while reserves of fossil 
fuels for power generation are being continuously 
decreasing and environmental pollution is 
increasing. So there is a shift towards renewable, 
clean and pollution free energy sources [1]. Among 
new sources of renewable energy, wind energy is 
the one that has seen tremendous growth over recent 
years; thus becoming, in various countries, the true 
alternative to fossil fuels. At the end of 2013, 
worldwide installed wind nameplate capacity with a 
growth of 12.5 % was 318,137 MW. It is estimated 
that the wind power will be 61 GW at the end of 
2017 with an annual growth rate of 7%. The major 
utilization of these wind capacity installations is in 
large scale grid connected electric power systems 
[2]. 
The Natural Regulatory Authorities (NRAs) operate 
in almost all countries for better utilization of the 
resources and for providing choice and quality 
service to the consumers at economical prices [3, 4]. 
Moreover, renewable energy sources based 
technologies are being perceived as major alternate 
source of energy and their penetration within the 

power system is rising at an alarming rate.  In this 
fast changing environment, three areas that have 
attracted the attention of engineers and forecasting 
researchers working in Electricity Supply Industry 
(ESI) are load forecasting, price forecasting and 
wind power forecasting. While load and price 
forecasting are mutually intertwined activities [5], 
wind power forecasting has emerged as an 
independent area of research. Load forecasting is 
important from operation, planning and scheduling 
point of view; whereas, price forecasting is 
important due to strategic reasons and protecting 
financial interests of the power generation 
companies.  On the other hand, wind power 
penetration has added one more dimension of 
uncertainty in the power system operation and 
control due to intermittent nature of wind power. A 
lot of researchers and academicians are engaged in 
the activity of developing new forecasting tools & 
algorithms in these areas. Some authors have 
already carried out significant reviews of 
methodologies and models proposed in these areas, 
specifically [5-10] concentrate on load forecasting 
review, the authors in [5, 11-14] have focused on 
price forecasting review and [15-20] belong to the 
area of wind power & speed forecasting review. Ben 
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Taieb et.al [21] has documented a review of multi-
step ahead prediction of time series by various 
prediction strategies.  
The wind power generation is highly associated 
with nature and multiple seasonality aspects. So it is 
not an easy task to design a perfect prediction model 
by considering above such. However, due to 
developments in the field of artificial intelligence 
(AI) and machine learning, even new models are 
being proposed at a very fast rate. In this ever 
changing environment, it is vital that a review of 
latest developments in wind forecasting areas should 
be explored for future researchers. This paper 
presents a review of different forecasting tools in 
wind power & its derivatives such as wind speed 
and direction by considering the papers which have 
appeared after 2000 in leading international 
journals. The review has been performed 
considering the following parameters (i) type of 
model used (ii) learning algorithm (iii) pre-
processing tool used (iv) factors affecting the 
forecast variable, (v) time horizon for prediction, 
(vi) accuracy criteria, (vii) data used for analysis 
(viii) prediction time period and (ix) structure of 
neural network. After a deep insight of more than 70 
research papers authors observed that the neural 
networks is the most prevailing approach for wind 
power and its derivatives estimation. It is also 
observed that hybrid models are more accurate and 
for gaining better accuracy, the training data should 
be updated regularly with small time span. Although 
for real time operation of power system, researchers 
have to move towards online models.  
The rest of this paper has been organized as follows: 
The next section describes different variables used 
for wind power prediction & their selection 
technique. Section 3 discusses the different 
techniques used for pre-processing; Section 4 
describes in brief different prediction techniques; 
Section 5 compares the computation time of 
forecasting machine. Section 6 gives a brief about 
multi-step ahead prediction. Section 7   presents the 
discussion, key issues & prospectus of review and 
finally, Section 8 concludes the present work. 

 
 
2 Input Variables & Their Selection 
Techniques 
The highly uncertain nature of wind originates from 
uncertainties of its derivatives that affect the 
reliability of system. The higher is forecast 
reliability; lower is the operational cost of the wind 
power in the system, thus the large-scale integration 
of wind power can imply substantial savings for the 

wind farm owners as well as better overall 
efficiency of the system [22]. However, predicting 
wind power is a tedious task; because blowing of 
wind is a natural stochastic process and wind speed 
time series is having some special characteristics 
like high volatility, non-linearity, non-stationarity 
and high complexity [17], [23] depending on the 
various physical conditions as given in Table 1.  
The hourly time-series curves for load, price, wind 
speed, and power have been shown in Fig. 1 for 
Ontario electricity market [24]. It can be analysed 
that load series shows the daily periodicity; on the 
other hand price, wind speed & power time series is 
more volatile in nature and shows lesser amount of 
periodicity as compared to load series.  
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Fig. 1: Hourly time series plots for load; price, wind 

speed and wind power (1-7 January, 2013) 
The selection of input variables is a quite important 
task because the accuracy of forecasting model is 
highly correlated with appropriate input variables 
and their past behaviour for wind power and speed 
estimation. The input variable selection for a 
prediction model depends mainly on exogenous and 
without exogenous variables. In present day 
scenario, statistical (time series), physical (NWP) 
and hybrid models are utilized for selection of input 
data for wind power forecasting. 
 
2.1 Physical (NWP) Models 
These are very common model in which wind is a 
function of exogenous variables and forecasting tool 
input is the output of NWP models. The physical 
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models are deterministic in nature & use the entire 
input derivatives that are interlinked with wind 
power generation. The implementation of physical 
models is complex in nature, execution time is more 
and dependent on physical properties of wind data 
obtained from meteorological stations and location 
of wind farm. The given power curve converts the 
wind speed into wind power (Wp =0.5.ρ.A.v3). 
Here, ρ is the air density which depends on 
temperature & pressure, v is velocity of wind 
through an intercepting area A. This equation 
considers the wind turbine & several other variables 
(factors). The wind speed for a surrounding area of 
wind mill is predicted by NWP models. 
 
2.2   Statistical Models 
It is a model in which wind is a function of its past 
observed values. These models are based on training 
with measured input data patterns. They do not 
require any mathematical expression; they only 

require the historical data pattern of wind power. 
The prediction accuracy of such models is more 
over the short term forecasting horizon, it is easy to 
implement and validate the model. They employed 
the statistics like: cross-correlation, Auto 
Correlation & Partial Auto Correlation Function for 
input selection on the basis of standard deviation, 
variance, mean and slope of input curve.   
 
2.3 Hybrid (Physical + Statistical) Models 
It is the combination of NWP and statistical tools 
for input data selection. In this on the bases of 
statistical analysis the NWP data is pre-processed to 
time lag for the prediction of next step.  
However the selection of input variables is still an 
open challenge for the power system researchers 
because, there are many factors which affect the 
wind power generation. After an extensive study of 
various research papers more than 56 exogenous 
variables have been observed as given in Table 1. 

 
Table 1: The factors affecting wind power and its derivatives 

Class Input variable Time period whose data is used as input 
1. Atmospheric  

Characteristics 
(1) Pressure, (2) Temperature, (3) Cloudiness,  (4) Rainfall,  (5) Cloud formation,  
(6) Cloud cover,  (7) Stratification of the atmosphere, (8) Turbulance, (9) Radiations, 
(10) Humidity, (11) Density 

 

2. Topographic 
Characteristics 

(12) Turbine position, (13) Turbine size,  (14) Hub height, (15) Tower height, (16) 
Degree in Latitude, (17) Elevation 

 

3. Wind Power 
Characteristics 

(18) Wind power, (19) Wind speed, (20) Wind direction, (21) Historical wind speed, 
(22) Historical wind power, (23) Radiation transmission, (24) Sine & Cosine of wind 
direction, (25) Air density, (26) Local wind profile, (27) Aggregate wind generation, 
(28) Wind power density 

f(wind Speed); (d-m,t), m=1,2,3,4,7,8, 168, 
365 

4. Behavior 
Indices 

(29) Hydrological cycle, (30) cloud-radiation interaction,  (31) spatial behaviour, 
(32) Temporal behaviour, (33) Spatial resolution, (34) Pressure tendency 

f(wind power ; (d-m,t-n), m=1,2,3,4,7,8, 
168, 365 and n= 0,1,2,3,4 

5.  Other 
Stochastic 

Uncertainty 

(35) Ocean-land interactions,  (36) Regime switching, (37) Dynamic performance of 
the generator, (38) Exchanges of momentum, (39) Load distribution among parallel 
turbines, (40) Thunders, (41) Storms, (42) Risk index, (43) Extreme power system 
events, (44) Guest wind speed 

f(wind direction ; (d-m,t-n), m=1,2,3,4,7,8, 
168, 365 and n= 0,1,2,3,4 

6. Geographical 
Conditions 

(45) Surface roughness, (46) Orography, (47) Obstacles, (48) Geographical height, 
(49) Mean sea level pressure, (50) Air temperature,  (51) Soil wetness, (52) 
Atmosphere covering, (53) Snow covering, (54) Moisture with land surface, (55) 
Complex terrain, (56) Terrain roughness 

 

 
 
3 Input Data Pre-processing 

The input wind and physical data collected from 
the site is in raw format does not have sufficient 
characteristics to forecast efficiently with high 
accuracy. This data is highly irregular, quite 
complex and seasonal as it depends upon weather. 
The above variations in time series include over-
fitting and over-training of neural networks model 
during prediction that leads to poor accuracy of 
forecasted system. Pre-processing of data means 
scale up or down the dimensions of input, clean up 
and classify the input data as per the dimensions. It 
may also be needed to classify the data according to 
seasonal as well as weather variable variations. 

Kalman filter has been utilized to overcome the 
problem of complexity, over-fitting, outliers and 
over training of input data pattern during the 
learning process [25-26]. Due to strong capability of 
handling random fluctuations and uncertainty 
Unscented Kalman filter (UKF) has been adopted 
for non-linear state estimation of wind speed [27]. 

The Wavelet Transform (WT) has been also 
implemented to decompose a wind power series into 
a set of constitutive series. These constitutive series 
reduce the input data and presents better behavior 
than the original wind series that result in improved 
prediction accuracy. The Wavelet Transform (WT) 
decomposes the time series into high and low 
frequency signal, then the decomposed data is fed to 
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the separate neural networks model for training. 
There are four filters (decomposition low pass, 
decomposition high pass filter, reconstruction low 
pass & reconstruction high pass filter) used in 
Discrete Wavelet Transform (DWT) for scaling the 
input data pattern [28-33]. In ref. [34] Empirical 
Model Decomposition (EMD) is used to decompose 
the wind power series into high and low frequency 
signals.  
Some researchers have performed the classification 
of input data by using unsupervised neural network 
learning algorithms [35-39]. The meteorological and 
past wind data series are classified by self-
organizing map (SOM) neural networks [35, 36, 
38]. The extreme power system events leads to high 
wind power variations, consequently high prediction 
error so SOM preliminary classify the regimes 
(meteorological & past wind pattern), then at the 
time of final prediction, the modified adaptive 
resonance theory is used to classify the different 
weather regimes [37]. Ref. [39] applied the 
Bayesian clustering by Dynamics (BCD) for 
clustering of input training data pattern with similar 
dynamical properties in unsupervised manner. Guo 
et.al [40] characterised four seasonal wind data by 
Seasonal Exponential Adjustment (SEA).  

 
 

4 Wind Power Estimation Techniques 
In the last two decades, machine learning models 
have drawn attention and have established 
themselves as serious contenders to classical 
statistical models in the forecasting community. 
These models, also called black-box or data-driven 
models are examples of nonparametric non-linear 
models, which use only historical data patterns to 
learn the stochastic dependency between the past 
and the future. The ANNs outperform the classical 
statistical methods such as linear regression and 
Box-Jenkins approaches. The ANNs can be 
successfully used for modeling and forecasting non-
linear time series [21]. 
The information regarding the NN models is given 
in Tables 2-4. In Table 2, a brief discussion about 
model used, pre-processing employed, input data 
samples used for training and input variables used 
by the different researchers is given. Table 3 
presents a brief about forecasting performance 
comparison of various artificial intelligence models. 
Table 4 gives the information about structural 
design of NN models and Table 5 outlines the 
information about physical data collection from 
different Power Systems and Wind Farm Sites. It is 
clear from the Table 2 that the FFNN architecture, 
which is also called as multilayer perceptron (MLP), 

along with back propagation (BP) as the learning 
algorithm is the most popular choice among 
researchers. The neural networks and machine 
learning algorithms structures used by most of the 
researchers after 2000 in the leading journals are: 
Feed Forward Neural Networks (FFNN), Recurrent 
Neural Networks (RNN), Radial Basis Function 
Neural Networks (RBFNN), Support Vector 
Machine (SVM) and adaptive neuro fuzzy inference 
system (ANFIS). Sfetsos et. al [41] compared linear 
models (autoregressive models) with non-linear 
models (feed forward neural networks, radial basis 
function network, Elman recurrent network, ANFIS 
models and neural logic network) to predict mean 
hourly wind speed time series. 
 
4.1 Feed Forward Neural Networks (FFNN) 
Based on the literature, most of the papers 
differentiated parameter learning algorithms in two 
categories: gradient descent search algorithms and 
some other evolutionary algorithms. In first 
category, ref. [42] uses back propagation & cascade 
correlation algorithms for training of MLP in order 
to forecast daily, weekly and monthly wind speed 
based on past data in an AR manner. Ref. [26] 
designed nine MLP neural networks with Kalman 
Filter for each time span of 30 min. upto 4.5 hrs. 
updation period of 72 hours, whereas in ref. [43] the 
nine neural networks model predicts wind speed and 
the data is downscaled by global forecasting model 
with MM5. Ref. [44] proposed Back Propagation 
Neural Networks (BPNN) for wind speed, electric 
load and biweekly foreign exchange forecasting. An 
abductive network which is more simplified & 
automated model for wind speed prediction shows 
more transparent mapping of input/output [45].  
The parameters of neural networks are determined 
by gradient search algorithm which encounters 
problem of local minima and sensitivity to initial 
values persists as a result of poor accuracy. So as to 
resolve above said problems, global evolutionary 
algorithms such as Genetic Algorithms (GA), 
Fuzzy, Particle Swarm Optimization (PSO) 
Enhanced-PSO (EPSO) [46-49] has been utilized.  
In some research papers neural networks has been 
worked upon together with other techniques to 
compute the accurate prediction.  Cadenas et.al [50] 
proposed three hybrid models for wind speed 
prediction, first in 2007 a hybrid seasonal ARIMA 
& ADALINE methods in which time series 
framework on 7 years of wind speed measurements, 
secondly in 2009, ANN model is used in which 
number of input neurons, input layers & output 
layers is varied [51] and third in 2010 achieved 
MAE of 0.49% by again using a hybrid ARIMA 
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with ANN model [52]. The original wind speed 
series has been decomposed into a finite series using 
empirical mode decomposition (EMD) technique, 
then that data is trained into FFNN [53]. Salcedo-
Sanz et.al [54] utilized fifth generation mesoscale 
NWP model (MM5) for downscaling of wind speed 
data and final prediction is done by ANN. In 2006 
six layered adaptive neuro fuzzy inference system 
(ANFIS) has been implemented for the estimation 
of wind power with a time step of one & achieves 
MAE less than 4% [55].  
 
4.2 Recurrent Neural Network 
The recurrent neural network (RNN) distinguished 
itself from others because it has at least one 
feedback loop and very limited numbers of 
researchers have applied this model. The FFNN and 
RNN have been employed in order to forecast daily, 
weekly as well as monthly wind speed based on past 
data in an AR manner using back propagation and 
cascade correlation algorithms [42]. Ref. [56] 
designed three different structured local RNN 
(Infinite Impulse Response Multilayer Perceptron, 
Local Activation feedback Multilayer Network and 
Diagonal Recurrent Neural Networks) with two new 
& optimal online learning schemes (Global 
Recursive Prediction Error & Decoupled Recursive 
Prediction Error) for updation of synaptic weights. 
The problem of gradients is overcome through 
higher order recurrent differential equation for the 
72 hours ahead wind power and speed estimation. 
Cao et al. [57] used univariate and multivariate 
ARIMA with RNN for wind speed estimation at 
different heights in two stages. 
 
4.3 Radial Basis Function Neural Network 

In this category, on the basis of literature review, 
five papers have been considered. Orthogonal least 
square algorithm (OLS) is the most dominant 
learning algorithm for the parameterization of 
Radial Basis Function Neural Networks (RBFNN). 
By viewing the design of the networks comparative 
to approximate non linear input output mapping, on 
the other hand, MLP network constitutes the 
exponentially decay curve fitting (approximation) in 
a high dimensional space. In order to handle the non 
linearity of wind power and speed series, a 
combination of unsupervised learning in the hidden 
layer and supervised learning in the output layer 
with Gaussian activation function is implemented. 
The preliminary prediction is done by two RBFNN 
with SOM classified meteorological data pattern and 
final prediction utilise Fuzzy rule base filtered data 
with three RBFNN [38]. Sideratos et al. [37] 
predicted the wind power during extreme events like 
regime switching by both on-line and off-line 
strategies. For off-line forecasting PSO and for 
online an adaptive learning algorithms, Genetic 
Algorithms based Minimal Resource Allocation 
Network (GA-MRAN) have been demonstrated for 
the modification of parameters of RBFNN. On 
limited historical data ref. [36] investigated the 
performance of two (Minimal Resource Allocation 
Network & Generalized Growing and Pruning) self 
adaptive, self constructed sequential learning 
algorithms with OLS based RBFNN. The 
probabilistic wind power forecasting is done by 
OLS and PSO based RBFNN [35]. Ref [58] 
achieves MAPE of 0.189% on wind speed by 
comparing the performance of FFNN, RBFNN and 
adaptive linear network for wind speed predictions 
at different learning rate & spread generation.  

 
Table 2: Different Wind Power and Its Derivatives Forecasting Technologies based on Neural Networks 
Paper NN Model Learning Algorithm Input Variables Total No. of Input 

Neurons (Time) 
Pre-processing 

Techniques 
[57]  Jordan RNN BP 19, 15 5 series, 5 network ACF, ARIMA 
[47]  RLNN DEA 18,19, 20   MI 
[40]  MLP  BP 19 5 input series, 31 input SEA, K-S Test, PDF 
[33]  AWNN BP 18, 19 6 Neurons WT, ACF 
[35]  RBF OLS, PSO 18, 19, 20, 55  SOM, PDF [1,-1] 
[37]   RBF  OLS, PSO, GA-mMRAN 18, 19, 20, 55   WT,  p-ARTMAP [1,-1] 
[36]  RBF MRAN, GGAP 18, 19, 20, 55   SOM [1,-1], Interval 
[28]  ANFIS, FMLP PSO, BP, LSE 18, 46, 45, 1, 2, 47 5 layer WT 
[49]  MLP EPSO, LM 18, 19, 2, 10 20, 21, 23 Neurons ACF, MI 
[38]  RBF  OLS 18, 19, 20, 48, 12 13 Neurons SOM, Fuzzy [1,-1] 
[1]  MLP LM 18, 19,14, 2 5 Neurons CC, SD (-1, 1) 
[39]  SVR RBF & Polynomial Kernel 20, 17, 1, 2, 10, 44 5 Neurons 9 BCD Clusters, ACF 
[46]  Fuzzy GA for fuzzy Training 20, 14, 56   ACF, PACF 
[56]  MLP DPRE, RPRE 18, 19, 20, 1, 2 7,5,3 Neurons ACF, IIR (-0.9, 0.9) 
[56]  MLN DPRE, RPRE 18, 19, 20, 1, 2 7,5,4 Neurons LAF, ACF (-0.9, 0.9) 
[56]  RNN DPRE, RPRE 18, 19, 20, 1, 2 7,5,5 Neurons ACF, CC (-0.9, 0.9) 
[55]  MLP (ANFIS) LSE, GDM 18, 19, 20 2,5,10 Neurons   
[29]  MLP BP 18, 19 7 Neurons WT, ITSM 
[58]  MLP, RBF, ADALINE BP, LM 19, 48 8 Neurons ACF, PACF, point forcst 
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[54] MLP LM 1, 2, 48, 19, 20 6 Neurons MM5 
[25]  MLP LM 18, 19, 20, 1, 2, 10, 14  6 Neurons Kalman Filter, CCs 
[34]  GM(1,1) LLEP 18   ACF, PACF, EMD 
[31] MLP LM 18 4 Neurons WT 
[26] MLP LM  6 Neurons Kalman Filter 
[59] SVM GP, LRM 19  (0, 1) 
[43] MLP LM 1,2, 19, 20, 48 2 series MM5, Navier-Stokes Eqn. 
[48] MLP BP 19  SD, A.V., Slop 
[51] MLP BP 19  ACF, PACF 
[52] MLP BP 19 3 Input ACF, PACF 
[27] SVR QP, LRM 19  UKF 
[63] v-SVR ALRM 19  PDF 
[62] SVR EP, PSO 1,2, 19, 20, 48  MM5, Navier-Stokes Eqn. 
[32] SVR GA 2, 19 3 input WT, ACF, PACF 
[61] SVM QP 1, 2, 10, 19, 20, 44 6 input Linear Classification, (1,-1) 

Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN), Ridgetlet Neural Network (RLNN), Levenberg Marquardt algorithm (LM), Support 
Vector Machine (SVM), Back Propagation (BP), Radial Basis Function (RBF), Empirical Mode Decomposition (EMD), Support Vector Regression 
(SVR), Adaptive Wavelet Neural Networks (AWNN), Wavelet Transform (WT), Minimal Resource Allocation Network (MRAN), Generalized Growing 
and Pruning (GGAP), Improved Time Series Model (ITSM), Gradient Discent Method (GDM), Least Square Estimation (LSE), Infinite Impulse 
Response (IIR), Local Activation Feedback (LAF), Global Recursive Prediction Error (GRPE), Decoupled Recursive Prediction Error (DRPE), 
Correlation Coefficient (CC), Kolmogorov-Smirnov (K-S), Global Forecast Error (GFE), Mesoscale Model (MM5), Grey Model (GM(1,1)), Perceptron 
Weight & Bias Learning Function (LEARNP), Least Square Estimation (LSE), Adaptive Neuro Fuzzy Inference System (ANFIS), Genetic Algorithms 
(GA), Seasonal Exponential Adjustment (SEA), Particle Swarm Optimisation (PSO), Enhanced Particle Swarm Optimisation (EPSO), Differential 
Evolution Algorithms (DEA), Mutual Information (MI), Self Organising Map (SOM), Modified Adaptive Resonance Theory (p-ARTMAP), Adaptive 
Resonance Theory (ARTMAP), Largest Lyapunov Exponent Prediction (LLEP), auto regressive integrated moving average model (ARIMA), Partial 
Autocorrelation Function (PACF), Autocorrelation Function (ACF), Bayesian clustering by Dynamics (BCD), Adaptive Wavelet Transform (AWT), 
Orthogonal Least Square Algorithm (OLS), Unscented Kalman filter (UKF), Quadratic Programming (QP), Augmented Lagrange Multiplier (ALRM), 
Lagrange Multiplier (LRM), Evolutionary Programming algorithm (EP), Orthogonal Least Squares (OLS) 
 

Table 3: Forecasting performance of Different Neural Networks based Models and Input Data Used 
Paper Output Training 

Data (Hours) 
Predicted Period Time Horizon Level Of Accuracy Input Type 

[57]  19 20000  6999 15 min., 30 
samples 

MAPE (11.5-19.8),  
MAE (5.86-8.23)m/s 

TS 

[47]  18, 27 1176 70 days 24 HA MMAPE (14.69-15.27) TS 
[40]  19  31 Days 24 hrs. MAPE (21.13-23.03) TS 
[33]  18 2500  3760 30 hrs., 10 min. MAE (7.08), RMSE (10.221) TS 
[35]  18  60 hrs. 1 HA 52% better then persistence NWP 
[37]  18  4273 40hrs, 6hrs updation 40% better then persistence NWP 
[36]  18, 43  36 hrs. 6 Hrs NRMSE (9.77-19.44) NWP 
[28]  18 48  1 year, 3 HA, 12 

samples of 15 min. 
15 min. MAPE (6.58), NMAE (1.65),  

MAPE (3.07-6.47) 
TS 

[49]  18 50 Days 4 seasonal week 24-48 hrs RMSE 3.89 MWh, NMAE 1.59 NWP+TS 
[38]  18 2 years 48 hrs. 6 hrs NMAE (5-14%) NWP+TS 
[1]  18 1 year 100 hrs. 10 min PFE (4.15-5.609) NWP 
[39]  18, 27 1 year 48 hrs. 10 min , 1 hr Improved RMSE as compare to Persistance 

(36.31-38.98%) 
NWP+TS 

[46]  18, 19  2 hrs 30 min to 2 hrs PE Improved compare to persistence 28.4%  
[56]  18, 19 3264 960 24 hrs pair upto 

72 hrs 
Speed MAE (1.97-2.339),  

Power MAE (1.2-1.48) 
NWP 

[56]  18, 19 3264 960 25 hrs pair upto 
72 hrs 

Speed MAE (1.99-2.21),  
Power MAE (1.32-1.43) 

NWP 

[56]  18 3264 960 26 hrs pair upto 
72 hrs 

Speed MAE (2.04-2.32),  
Power MAE (1.34-1.477) 

NWP 

[55]  18 21 month  2.5 min MAE less than 4% 
 [29]  18 150  250 samples  Speed MAPE (3.16-6.80) MAE(0.58-1.1 m/s); 

Power MAPE 1.42-2.88 MAE (70.72-155.21 
KW) 

TS 

[58]  19 5000  120 1 HA MLP MAPE(0.189) RMSE (1.469)  
RBF MAPE(0.189) RMSE(1.44)) ADALINE 

MAPE(0.194) RMSE(1.485) 

TS 

[54] 19 4750 1570 (24X24=48) hrs. MAE (1.45-2.2) m/s NWP 
[25]  18 1 year one month 15 min. NRMSE 16.47 NWP 
[34]  18 610  100 points 10 min NRMSE (7.80) MAPE (18.33) TS 
[31] 18 4 SD 12 hrs  3 hrs up to 24 hrs. 15 min. MAPE 6.97 TS 
[26] 18  4.5 hours updation 30 min time span RMSE 14-19.7% NWP 
[59] 19 2000 Days 728 Days  MSE 0.0078% TS 
[43] 19 4750 1570 48 Hrs. MAE (1.1051-1.6346) NWP 
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[48] 19 672 One year 30 min. RMSE (2.3227-4.96) TS 
[51] 19 550 194 24 hrs MAE(0.0399-0.449) TS 
[52] 19 One month 48 hrs. 48 Hrs. MAE(0.068-1.76) TS 
[27] 19 500 samples 200 Samples 10 min. MAPE (2.07) TS 
[63] 19 288 samples 576 samples 10 min. MAPE (12.53) TS 
[62] 19 4750 1570 48 hrs MAE (1.78-1.79) NWP 
[32] 19 765 336 30 min. MAPE (14.79), MAE (0.6169 m/s) TS 
[61] 19 5 Years 2.5 Years  Error (2.94-6.49) NWP 

Mean Absolute Error (MAE), Normalised Mean Absolute Error (NMAE), Normalised Root Mean Square Error (NRMSE), Absolute Percentage Error 
(APE), Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE), Time Series (TS), Numeric Weather Prediction (NWP), Hour Ahead (HA), 
Modified Mean Absolute Percentage Error (MMAPE), Extreme Power System Events (EPSE), Aggrigate Wind Generation (AWG), Percentage Forecast 
Error (PFE), Persistance Error (PE), Seasonal Day (SD) 
 
4.4 Support Vector Machines (SVM) 
The SVM is a linear machine with an idea to 
perform nonlinear input output mapping of low 
dimensional input space into high dimensional 
(feature) space with an objective to increase 
confidence interval of learning via regression [59, 
60]. Mohandes et.al [59] compares the performance 
of SVM and MLP for daily mean wind speed 
estimation using 12 years historical wind speed data. 
Here the SVM formulated using quadratic 
programming optimisation and achieve MSE 
0.0078%. The potential of quadratic optimised SVM 
is investigated for wind speed estimation using 
meteorological variables like temperature, pressure, 
wind direction, humidity, guest speed and wind 
speed [61].  
  Salcedo-Sanz et.al [62] compared the performance 
of evolutionary programming (EP) and PSO for fine 
tuning the parameters of SVM. The half hourly 
physical down-scaling of meteorological data is 
done with the help of MM5 and EP based SVM 
performed better than PSO algorithm. Ref. [32] 
proposed GA fine tuned RBF kernel SVM in 
conjunction with WT. Ref. [39] combined the 
Bayesian clustering and SVR in which the Bayesian 
classifier is used to make the clusters of input wind 
power data in unsupervised manner, then pre-
processed data is fed to Support Vector Regression 
(SVR) for training in supervised way. Ref. [27] 
demonstrates SVR & UKF approach for wind speed 
prediction with taken care of wind sequences 
stochastic uncertainity. Qinghua Hu et.al [63] 
derived Bayesian approach general loss function by 
considering different error rate models for 
predicting wind power and demonstrated ν-support 
vector regression using Augmented Lagrange 
Multiplier (ALM). 
 
Table 4: Structural Design Neural Network Models 

Ref. Structure & 
No. of Layers 

No. of Input 
Neurons 

Activation 
Function 

Settlement 
Period 

[57] [26-26-26] 26 SF 15 min. 
[36]   GF 6 hours 
[37]   GF 6 hrs 
[33] [4:20-2-1] 6 SF, AWF 30 hours 
[49]  20, 21, 23  8 hours 
[47]   RF 24 hrs 

[1] [5- -1] 5 SF, HT 10 min. 
[28] 5 Layer  Bell, Tringular 3 hours 
[23] [7-20-1] 7   3 hours 
[42] [8-4-1] 8 SF 1 hour 
[44] [6-9:15-1] 6 LF 1 hour 
[25] [6-13-1] 6 HTS 6 hrs. 
[26] [6-9:13-1] 6 HT   
[40] [30-61-30] 30 TSF, LSF 24 Hrs. 
[54] [6-9:15-1] 6  24 Hrs. 
[58] [6-4-1], [8-4-

1] 
6, 8 SF, RBF 1 HA 

[38] 2 Layer  Gaussian 6 Hours 
[56] [3:5:7-7-1], 

[3:5:7-8-1], 
[3:5:7-32-1] 

3 to 7 HT 24, 25, 
26 Hrs. 

[55] 6 layer 6 Bell Shape  
[52] [3-2:3-1], [2:3-1] 2,3   
[31] [4-6-1] 4 LSF, HT 3 hrs. 
[43] [6- -1] 6 LF 24 hrs 
[27]   RBF  
[63]   OLF 60 min. 

Hyperbolic Tangent Sigmoid (HTS), Hyperbolic Tangent (HT), Logistic 
Function (LF), Sigmoid Function (SF), Gaussian Function (GF), 
Logistic Sigmoid Function (LSF), Tangent Sigmoid Function (TSF) 
Adaptive Wavelet Function (AWF), Optimal Loss Function (OLF), 
Lagrange Function (LF), Radial Base Function (RBF), Ridglets 
Function (RF) 
 
Table 5: Power System & Meteorological Data Sites 

Ref. Power System Data Used 
[33] National Renewable Energy Laboratory 
[36] Northwest Ireland 

[37], [35] Klim Wind Farm, Denmark; Lasithi Wind Farm, 
Greece; 

NWP Data from Danish HILRAM 
[57] Wind Energy Research Field Laboratory Texas Tech. 

Univ. 
[47] Irish Power System 
[43], 
[54], 
[62] 

La Fuensanta, wind park, Spain; National Centre for 
Environmental Prediction, USA; Navy operational 

Global Prediction model, USA; Canadian 
Meteorological Centre    

[40] Miniqin Region, China 
[30], [34] Dongtai Wind Farm, China 

[51] La Venta, Oaxaca 
[48] Rostamabad, Iran 
[58] Hannaford & Kalm, North Dakota, US; 
[29] Wind Farm, China 
[59] Mean daily wind speed Madina city, Saudi Arabia 
[38] Klim Wind Farm, Jutland; NWP of Danish HILRAM 
[1] Lawton City, O.K. 
[39] Blue Canyon 1, South western Oklahoma, US 
[56] Wind Farm, Greek Island of Crete; NWP of SKIRON 
[55] Wind Farm, Tasmania 

[28], [31] National Electric Grid, Portugal 
[49] Blue Canyon Wind Farm, Alberta, Canada; Canadian 

Meteorological Centre; Oklahoma, US; National 
Centre for Environmental Prediction, USA  
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[25] Lingyana Wind Farm, Jiangsu, China; National Centre 
of Atmospheric Research; National Centre for 

Environmental Prediction, USA  
[46] Data from North of Portugal 
[52] Commission Federal DE Electricidad, Maxico 
[27] Massachusetts, USA 
[32] Wind farm of North China 

 
 
5. Comparison of Computation Time  
It is remarkable to note that the relevant feature 
extraction and learning process creates unnecessary 
computation burden on the forecasting engine, 
therefore the computation time for each and every 
model is different. Ref. [49] took into account total 
execution time taken for the selection of feature, 
training process and adjustment of the adjustable 
parameters and the total computation time required 
for the setup of the proposed wind power forecast 
engine is about 20 min for the test. The set up time 
is 20 min. either for one hour or 24 hours and the 
time for forecast of the next 23 hours is less than 
one second measured using hardware set of Pentium 
P4 3.2 GHz with 4-GB RAM. It is acceptable within 
a day-ahead and even hour ahead decision making 
framework. Catalao et.al [31] compared the 
computation time performance of the proposed 
NN+WT approach with the performance of ARIMA 
and NN approaches. The average computation time 
taken by the proposed NN+WT approach is less 
than 10 s similar to the average computation time 
taken by the NN approach for 3 hours step 
estimation. Instead of this, the ARIMA approach 
took about 1 minute whereas, in ref. [28] 
computation time taken by hybrid 
WT+PSO+ANFIS using MATLAB on a PC with 1 
GB of RAM and a 2.0-GHz-based processor for 
each forecasted day is less than 1 minute.  
In ref. [47] on a simple hardware set of Pentium P4 
3.6 GHz with 4 GB RAM, the computation time 
taken by RLNN for one day ahead decision making 
framework is about 1 minute. Liu et.al [29] reported 
training time of 3 seconds for 150 samples with 
learning rate of 0.01-0.25. Table 6 explains the 
computation time of above discussed model. 
 

Table 6: Comparison of Computation Speed 
Ref. System Configuration & 

Software Used 
Time 

Taken 
Prediction 
Horizon 

[56] P4 3.6 GHZ with  4 GB RAM 1 min. 24 hrs. 
[30]  3 Sec. 15 min. 
[29] 2.0 GHZ, 1 GB RAM; MATLAB 1 min. 24 hrs. 
[58] P4, 3.2 GHZ with 4 GB RAM 20 min 24 hrs 

ahead 
[32] 2.0 GHZ, 1 GB RAM; MATLAB 10 Sec. 3 hrs. 

 
 

6 Multi-Step Ahead Wind Power 
Forecasting 
The multi-step ahead prediction is a task of 
predicting a sequence of values in time series. It is a 
step-by-step approach & uses the current step 
prediction to determine its values in next step 
prediction. The multi-step ahead prediction suffers 
from error accumulation and complexity of data 
problem when the prediction period is long. This is 
because the bias and variance from previous steps 
are propagated into future predictions. So, the 
selection of input parameter function to fit the time 
series can be a challenging task for the power 
system researchers. Ben Taieb et.al presents a 
comparative review of different (Recursive, Direct, 
DirRec, MIMO, DIRMO Strategies)   multi-step 
ahead prediction strategies with the application of 
different lazy learning algorithms [21]. These 
strategies could be adapted in future for wind power 
prediction for few future time steps at present time. 
Giorgi et.al [64] performs error analysis of neural 
networks for multi-step ahead wind power 
prediction. She tried different architectures (varying 
no. of hidden layers with different numbers of 
neurons), activation functions, learning methods and 
lengths for the training set. Saroha et.al [65] 
performs time series based multi-step ahead wind 
power prediction by three different classes; FFNN, 
Elman Recurrent Neural Networks (ERNN), Linear 
Neural Networks with Time Delay (LNNTD) of 
neural networks. Zhenhai Guo et.al [53] used EMD 
based neural network for multi-step wind speed 
prediction.  Vaccaro et.al [66] compares a physical 
(white-box) model with a family of local learning 
techniques (black-box) for short and medium term 
and multi step ahead wind speed forecasting.  
 
  
7 Discussion, Key Issues & Prospectus 
This review covers many of the research papers 
published after 2000 from the leading international 
journals in the field of wind power and prediction of 
its derivatives (speed & direction) & it is observed 
that each model has its own characteristics and 
operate in different situations. However, it is quite 
complicated and difficult to design a perfect 
prediction model with taken care of high uncertainty 
of wind.  
• It has been found that the NWP models 

performed better than statistical in wind power 
prediction as it being a natural process depends 
on the physical, meteorological and other 
physical conditions.  
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• The input variables or input node selection is a 
key issue for the success of forecasting engine 
because the recently generated wind and other 
variables as discussed in table 1 is highly 
correlated with past data pattern of time series.  

• Being a natural process, the selection of data is 
in autoregressive (AR) format i.e. data used for 
implementation of neural network model is 
regularly updated after a small time span.  

• The complexity of neural networks system 
increases because of high association of 
overtraining, over fitting and outlier as a result 
of this prediction accuracy is reduced.   

• Generally, naive model is the benchmark 
model for the every research with AR or 
Moving Average (MA) model but the naive 
model accuracy is less as compared to other.  

• The new developments in pre-processing and 
learning algorithms of neural networks can 
improve the prediction performance in future. 

• The updation of data for each step prediction 
requires 2 hrs to 8 hrs. It is a quite important 
aspect for the improvement of prediction 
results in shorter time period. 

• The uncertainty & risk indices of both point 
and interval forecasting strategy is reduced by 
probability density function and confidence 
interval. 

• It is evident that the wind data collected from 
different power systems and sites have unique 
characteristics, therefore the prediction rate is 
different for each data for the same forecasting 
model. Thus the selection of appropriate model, 
structure of ANN & its modeling framework is 
very important and difficult task. 

• Limited number of models has been developed 
for online pre-processing, learning of NN and 
estimation of wind power. It is evident that the 
online model is relatively tedious job.   

• The computation time is not a significant issue 
for forecasting engine but for taking part in 
bidding the overall time should be taken into 
consideration. The time taken by hybrid models 
is more because it involves both pre-processing 
and testing time.  

• Most of the researchers worked on single step 
ahead prediction, very limited researchers have 
used multi-step ahead concept, and therefore 
the concept of multi-step ahead prediction is 
still an open issue for power system 
researchers. 

 
 
 

8 Conclusion 
Now-a-days, the gap between demand & supply of 
electricity is increasing at an alarming rate so, wind 
power can be a substitute to full-fill this gap. In day 
ahead (DA) deregulated electricity markets, it is 
necessary to know the future wind power generation 
to integrate and taking part in market. In recent 
years, a large number of wind power and 
methodologies for prediction of its derivatives have 
been developed by many researchers achieving a 
varying level of accuracy. Each technique has its 
own characteristics and must be used according to 
available historical data pattern & type of accuracy 
desired.  
It has also been observed that before 2000 most of 
the researchers have used time series and Artificial 
Intelligence methodologies for electricity 
forecasting but after 2000 offline & online hybrid 
models have become a norm. The outputs of 
physical and statistical models are used as input to 
time series & artificial intelligence prediction tools, 
thus it helps them to achieve more valuable results. 
Moreover, after 2000 the recently proposed hybrid 
models using MLP or SVM show more accurate 
results as compared to others. In hybrid model, one 
technique is used for taking input-raw wind data 
pattern pre-processing, another technique is used for 
updation of training weights & biases. Then the 
suitable data is given to neural network model for 
training and the trained data is utilized for actual 
wind power prediction. Although most of these 
techniques are offline, therefore for the real time 
operation of power system in day ahead deregulated 
electricity markets, there is further movement 
towards online models. This review limelight’s 
single step & multi-step ahead wind power 
prediction & it has been concluded that the single 
step ahead prediction has reached its advanced stage 
of research whereas, multi-step ahead prediction 
with higher level of accuracy is quite complex and 
tedious job to perform. So a lot of research is still 
required in this area and for taking part in electricity 
markets it is a necessary tool. 
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